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Usefulness of  the exponentially generated wave function approach is shown. 
We first give an overview of the SAC (symmetry adapted cluster) and SAC-CI 
study on the valence and Rydberg excitations and ionizations of  benzene 
including both ~ and o- spaces. The importance of the o- reorganization effect 
is found for the T3(3B2u), S:(1Blu), and S3(1Elu) states, so-called V states. A 
first systematic calculation is reported for the Rydberg excited states. Next, 
the idea of the exponentially generated wave function (EGWF) theory is 
explained. New exponential-type operators and new wave functions associated 
with them are defined. The mixed or multi use of  these exponential operators 
is shown to be effective both physically and practically. We call the resultant 
wave functions M E G  (multi-exponentially generated) wave functions. We 
then explain the algorithm of calculations and show some results on the 
potential energy curves of  the ground, excited, and quasi-degenerate states 
of  some diatomics and triatomics. 
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1. Introduction 

In recent years, the needs for accurate theories of  molecular excited states are 
more and more increasing. This trend is partially due to a demand from active 
experimental developments in molecular spectroscopy such as in laser chemistry 
and in synchrotron orbital radiation chemistry. We have been engaged for almost 
ten years in the quantum chemistry of  molecular excited states. The purpose has 
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been to develop accurate and useful theories of molecular excited states. The 
theory of molecular excited states may be grouped into two stages: one is the 
theory for molecular spectroscopy near vertically excited states, and the other is 
the theory useful for studying dynamics and chemical reactions involving 
molecular excited states. For the latter purpose, we need accurate knowledge of 
the potential energy surfaces and the properties involving ground state and several 
excited states. 

Our approach to the theory of excited states is as follows. Near vertical excitations, 
we use SAC (symmetry adapted cluster) expansion theory [1] to calculate ground 
states, and SAC-CI theory [2, 3] to study excited, ionized, and anion states. To 
calculate wave functions and energies for all possible nuclear configurations, the 
SAC theory, which is a Hartree-Fock reference theory, sometimes breaks down. 
We therefore consider the multireference version of the SAC theory, called 
MR-SAC theory [4], and the exponentially generated wave function (EGWF) 
theory [5], which is more general than the MR-SAC theory. In this symposium, 
we first explain briefly the SAC and SAC-CI approach giving some recent results 
on the excited states of benzene [6]. Then, we explain our recent EGWF approach 
and give some progress report of the applications of this theory. 

2. SAC and SAC-CI theory 

The Ursell-Meyer exponential cluster expansion ansatz was first introduced for 
a closed-shell ground state by Coester and Kiimmel [7] and later introduced and 
applied successfully in the field of quantum chemistry by Sinanoglu [8], Primas 
[9], Cizek and Paldus [10], Mukherjee et al. [11] and Bartlett [12]. The SAC 
expansion [1] belongs to this approach and is a generalization to open-shell 
systems. In the SAC expansion, we operate the exponential of the symmetry 
adapted excitation operator S~ to the Hartree-Fock (HF) function 10>. 

~SAC=G exp (~ CtStl)'O). (1) 

Here, the symmetry adaptation of the operator is necessary because of a non-linear 
nature of the expansion. The operator ~ is a symmetry projector, but it is 
unnecessary for totally symmetric systems. This expansion is suitable for both 
dosed- and open-shell molecules, and describes self-consistency [ 13] and dynamic 
correlations [8] very well. We formulated the SAC theory in both variational [1] 
and non-variational [3] frameworks. 

We showed [1] that the SAC expansion is different from the conventional coupled 
cluster expansion [ 10] especially for open-shell systems. Though the conventional 
expansions have some difficulties [1] for open-shell systems, the SAC expansion 
does not have. In the limit that we include only single excitations in the excitation 
operators, the ordinary cluster expansion reduces to the UHF (unrestricted HF) 
wave function as Thouless' theorem implies [1, 13]. It is not an eigenfunction of 
the spin-squared operator and has some other defects [14]. On the other hand, 
the SAC theory reduces, in the same limit, to the pseudo-orbital theory as we 
already showed [1, 15]. 
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Two roles of the SAC theory are important. One is to give an accurate wave 
function to the ground state. The other is to give, at the same time, a subspace 
of the functions which are orthogonat and hamiltonian-orthogonal to the SAC 
wave function. Such functions are defined by 

qb K = ~ R ~  ~SAC, (2) 

where RfK is a symmetry-adapted excitation operator and N projects out the SAC 
function. The functions {dPK} satisfy [2] 

(,~, I~sac) = 0, (~K IHI*SAC)=0. (3) 

This relation is a necessary condition which the excited state should satisfy. The 
functions {~K} thus span the space for the excited state. Therefore, we describe 
the excited state by a linear combination of these functions 

~SAC-CI = ~ dK (I)K (4) 
K 

which is the SAC-CI wave function [2]. 

We use the SAC-CI theory to describe excited states, ionized states, and electron 
attached states. For the latter two cases, the operator R~ in Eq. (2) is an ionization 
or electron attachment operator, respectively. The condition expressed by Eq. 
(3) is automatically satisfied in these cases. The SAC-CI theory is more rapidly 
convergent than an ordinary CI because it satisfies the necessary condition for 
the excited states (Eq. (3)), and because it starts from the ground state correlation 
as seen from Eq. (2). The primary processes Of excitations and ionizations involve 
only one or two electrons and the other electrons lie in the situation similar to 
that in the ground state. It is, therefore, a better approximation of the excited or 
ionized states to describe them based on the ground state correlated wave 
functions, as in Eq. (2), rather than to describe the excited-state correlations from 
the first beginning as in the CI  theory. In a previous paper [3], we described 
both variational and non-variational solutions of  the SAC-CI theory. 

The SAC and SAC-CI theory have been applied successfully to the excited and 
ionized states of H~O [3, 16, 17], CH 2 [18], H2CO [19], CO2, N:O [20], NO 
radical [21], glyoxal [22], ethylene [23], NH~ [24], pyrrole, furan, and cyclopen- 
tadiene [25], and to the potential energy curves of the ground and excited states 
of Li2 [26], CO [27], PdH2, and Pd2H2 [28] molecules. The last two systems are 
studied as a model of the dissociative adsorption of a hydrogen molecule on a 
palladium surface. We have studied the one- and two-electron processes in the 
ionization spectra of H20 [29], CO2, N20 [20], CS2, COS [30], NO radical [21] 
and benzene [31]. We have also studied spin- and electron-correlation effects on 
the hyperfine splitting constants of several open-shell radicals [15, 32-34]. 

The program system for the SAC and SAC-CI calculations have been published 
[35]. It can deal with singlet closed shell ground state by the SAC theory and 
singlet and triplet excited states, doublet ionized and electron attached states by 
the SAC-CI theory. The basic algorithms used in this program were explained 
previously [3, 20]. 
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3. Excited states and ionized states of benzene 

We apply here the SAC and SAC-CI theory to the valence and Rydberg excitations 
and ionizations of  benzene. Benzene is a key aromatic molecule and is probably 
one of the best studied molecules like ethylene. This molecule is also a historical 
molecule in the development of molecular quantum chemistry. It was a central 
molecule in the Hfickel ~r-electron theory [36] and in the Pauling's resonance 
theory [37]. This idea was further developed by Goeppart-Mayer and Sklar [38], 
Pariser, Parr [39] and Pople [40] as the ~'-electron theory of conjugated hydrocar- 
bons. However, ab initio study of the excited states of  benzene is still very limited 
[41-46]. The most thorough study is probably due to Hay and Shavitt [45], but 
this is still limited to within 7r-electron CI. Only the lower three states, two triplets 
and one singlet, were described rather reasonably by the ab initio ~--electron CI 
theories, if they include more than triple excitations. 

The calculational details are as follows. We use the experimental geometry of 
the ground state [47] for all the states. We use three kinds of basis set. The basis 
# 0  is the one used by Hay and Shavitt [45], double zeta Huzinaga-Dunning set 
[48] plus Rydberg p~ orbitals on each carbon. For the valence excitations, we 
further add to basis # 0  the d= polarization functions on each carbon (ffd = 0.75) 
[49]. This is basis set #1.  For the calculations of the Rydberg excitations, we 
add to the basis # 0  the s, p, and d functions in double ~ accuracy at the center 
of the molecule (~'s = 0.0184, 0.0437; ~'p = 0.0168, 0.0399; ~'d = 0.0120, 0.0285) [49]. 
This is basis set #2.  The active space consists of all r MO's and almost all or 
MO's, namely 80 MO's. The dimension of the calculation becomes relatively 
small by virtue of the SAC-CI theory. In the present algorithm, the dimension 
becomes to that of the SD (singles and doubles) CI though the calculation 
includes up to the quadruple excitations in the unlinked approximation. Further, 
by adopting the configuration selection scheme [20], we can choose an optimal 
dimension of the calculation, even if we use a large active space. Because of this 
merit we can include even the o--electron space. The dimensions adopted here 
are less than 4 thousands. For integral transformation, we use the Bender 
algorithm [50] and for sorting the Yoshimine algorithm [51]. The SCF calculation 
is performed by H O N D O G  program [52] and the SAC/SAC-CI calculation is 
performed with a slightly modified version of the SAC85 program [35]. 

The Hartree-Fock energy of benzene calculated with the basis #1  is 
-230.660466 a.u. The correlation energy of the ground state is calculated to be 
-0.08771 a.u. by the SAC theory when only the ~- space (35r MO's) is considered. 
When the or space is included (357r+45o'), the correlation energy becomes 
-0.19764 a.u., more than twice as large as that of the ~r space only. 

Table 1 shows the results for the valence 7r~ ~'* excitations of benzene. It 
compares with experiments [53], the SDT ~--CI results of Hay and Shavitt [45], 
the 35~" SAC-CI results, and the 35~-+45o- SAC-CI results. The values in 
parentheses show the deviations from the experimental values. We call the ~r ~ ~r* 
excitations to the 1B2u, 1Blu and 1Elu states as S1, S 2 and $3 states, respectively, 
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Table l.  Valence ~- -~ ~-* excitation energy of benzene (eV) a 

205 

SDT 7r-CI b SAC-CI c 
Hay-Shavitt  b 

State 23 ~r 357r 35 ~" + 45 ~ Exptl.d 

'B2u(S,) 5.00 (0.10) :5.25 (0.35) 5.25 (0.35) 4.90 
~B,u(S2) 7.64 (1.44) 7.31 (1.11) 6.60 (0.40) 6.20 
XE,u(S3) 8.34 (1.39) 8.25 (1.30) 7.47 (0.52) 6.95 
3B~u(T~) 3.83 (-0.12) 3.80 (-0.15) 4.06 (0.11) 3.95 
3E~u(T2) 4.98 (0.23) 5.05 (0.30) 5.02 (0.27) 4.75 
3B2u(T3) 7.00 (1.40) 6.65 (1.05) 6.02 (0.42) 5.60 

a Values in parentheses show the deviations from the experimental values 
b Basis set #0  
c Basis set # 1 
d [53] 

and to the 3Blu, 3Exu and 3B2u s t a t e s  as T1, T2 and T3 states, respectively. These 
excitations are primarily single excitations from the highest occupied ~- orbital 
to the lowest unoccupied valence ~-* orbital. Fig. 1 shows these results schemati- 
cally. The uppermost  row shows the result of  the ~--CI of  Hay and Shavitt. The 
average error from the experimental values shown in the bot tom row is 0.77 eV. 
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Fig. 1. Comparison of various levels of theoretical results with experiments for the valence ~r-> ~* 
excitations of  benzene 
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The second row shows the result of the SAC-CI calculation within ~r MO's 
including d-polarization functions (basis #1).  The d polarization function 
improves T3 and $2 states by 0.35 eV and 0.33 eV, respectively. The average error 
decreases to 0.65 eV. When we further relax the o--electron space, the T3, $2, and 
$3 states are much improved. The improvement is 0.63 eV for T3, 0.71 eV for $2 
and 0.78 eV for $3. The average error reduces to 0.34 eV. The remaining error 
still existing is in maximum 0.52 eV for the $3 state. Thus, we conclude first that 
t h e  T1,  T 2 ,  and $1 states are explainable within ~r-CI, second that for T3 and $2, 
the polarization d~ function reduces the error by 0.3-0.4 eV and the o--reorganiz- 
ation effect reduces the error by 0.6-0.7 eV, and third that for the $3 state the 
effect of the d~ polarization function is small, but the o--reorganization effect is 
as large as 0.78 eV. 

The "1"3, $2, and $3 states are the so-called ionic V states of benzene [54]. It was 
conjectured that the o--reorganization effect should be large for these states. The 
present result confirms this conjecture. 

We observe some general trends in the reorganization of the o- electrons due to 
the ~ ~ 7r* excitations [6]. Since the ~-~ ~-* transition shifts the 7r electrons to 
the outer rim of the hexagon, the or electrons on the other hand move into the 
inside of  the hexagon. The reorganization is largest for the $3 transition [6]. Table 
2 shows the electronic part of the second moment for the ground and excited 
states of  benzene. The axis x is perpendicular to the p lane  and y and z lie on 
the plane. For the ground state the theory agrees well with experiment [55]. All 
the states shown here are genuine valence states except for the $3 state. Within 
the 7r SAC-CI, the $3 state is relatively diffuse. It has the (X 2) value twice as 
large as those of  the other states. However, when the o- MO space is relaxed, 
the state becomes very much compact. The (x 2) value of the t r+ ~ calcula- 
tion is only slightly larger than those of the other states. Therefore, the $3 state 
is also a genuine valence state. This situation is very similar to the 
V state of ethylene. Huzinaga found a remarkable diffuseness of this state within 

Table 2. Electronic part of  the second moment  of  the valence excited states of  benzene (a.u.) 

SAC and SAC-CI 

357r 35~-+45tr 

State (x2) a (y2) (z 2) (x 2) (y2) (z 2) 

So b 30 215 215 31 215 215 
S 1 31 216 216 31 216 216 
S 2 34 219 219 33 217 217 
$3 62 234 248 41 220 225 
T 1 30 216 216 31 216 216 
T 2 31 216 216 31 216 216 
T 3 32 217 217 32 217 217 

a x axis is perpendicular  to the molecular plane. 
b Experimental value [55]; (x 2) = 28 + 6, (y2) = (z 2) = 218 • 5 
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~- calculation [56]. Tanaka observed that the tr MO relaxation in CI worked to 
shrink the spatial extension of the V state [57]. Due to the more extensive CI 
[58-60] and SAC-CI [23] calculations, the (x 2) value of the V state of ethylene 
is about twice as large as that of the ground state. This trend seems to be common 
to the relatively diffuse V states of the valence excited states of conjugated 
hydrocarbons. 

In Fig. 2, we compare the SAC-CI results for the singlet Rydberg excitations 
with experiments [61]. This is the first systematic calculation of the Rydberg 
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Fig. 2. Experimental (above) and theoretical (below) singlet Rydberg excitation energies of benzene 
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Table 3. Outer valence ionization potential of benzene 
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SAC-CI Green f ' n  b Koopmans' 
State Exptl. eV (A) a eV (4) eV 

12EtgII 9.3 8.88 (0.4) 9.10 (0.2) 9.26 
22E2g 11.4 11.27 (0.1) 11.95 (0.5) 13.36 
12A2ulSI 12.1 12.41 (0.3) 12.26 (0.2) 13.73 
12E~u 13.8 13.78 (0.0) 14.46 (0.7) 16.00 
12B2u 14.7 14.22 (0.5) 14.83 (0.1) 16.83 
12Blu 15.4 15.96 (0.5) 15.75 (0.4) 17.52 
22Alg 16.9 16.91 (0.0) 17.48 (0.6) 19.39 
12Ezg 19.2 19.45 (0.2) 20.01 (0.8) 22.44 

a A: difference from the experimental value [63] 
b [62] 

excitations of benzene involving both o- and ~r states. All the Rydberg excitations 
shown in Fig. 2 are from the ~- orbital. The agreement between theory and 
experiment is excellent; viz., the theory reproduces the experimental values to 
within 0.2 eV. More details will be published elsewhere [6]. 

Fig. 3 shows a comparison of  the SAC-CI theoretical spectra with the experimental 
one [53]. The peak at about 7 eV is the allowed transition and corresponds to 
the transition So--~S3(1Elu). By an enhancement of the shoulder below 6.8 eV, 
the spectrum in the 3-7 eV region was obtained. Several peaks observed there 
correspond to the transitions to the $ 1 - $ 2  and T 1 - T 3  states. In total, the 
agreement between ~;heory and experiment is satisfactory. 

In Table 3, we compare the ionization potentials of benzene calculated by the 
SAC-CI method with those calculated by the Green function method by von 
Niessen et al. [62] and with the experimental values [63]. This result is due to 
basis # 1. Hirao and Kato [31 ] reported SAC-CI ionization potential of benzene 
using 4-31G basis set. The Green function method reproduces the experimental 
values to within 0.8 eV. The present SAC-CI calculation reproduces them to 
within 0.5 eV. Both theories show that between the higher two ~r states (2Elg and 
2A2u) there is a Z state (2E2g), supporting the assignment due to Lindholm et al. 
[63] but against that of Potts et al. [64]. The Koopmans values give correct 
ordering, though they are not good quantitatively. 

4. Exponentially generated wave functions 

The SAC and SAC-CI theory is a very useful framework of the theory for studying 
ground, excited, ionized, and anion states of molecules [35]. We apply the SAC 
theory to the Hartree-Fock (HF) dominant state (usually the ground state) and 
generate excited, ionized, and anion states by the SAC-CI theory. Sometimes, 
the HF dominant state is not necessarily the ground state of the molecule 
[21, 27, 32]. 

However, when we study bond-breaking processes, for example, there occurs 
sometimes the situation in which the HF configuration is not at all dominant in 
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any lower lying states. The quasi-degenerate state is one such example. In such 
cases, the SAC theory is not at all appropriate, since it is a HF reference theory. 
We have to extend it to multireference version and more. Along this line, we 
have already published multireference (MR) SAC theory [4], and exponentially 
generated wave function (EGWF) theory [5] as a more general approach. In this 
section, we briefly review an outline of this theory. 

4.1. Breakdown of  the single reference theory 

We first analyse the source of the breakdown of the single reference theory [4]. 
We consider a model system in which only three configurations are important. 
They are 10), S~I0), and S~210) with 10) and S~ being the HF configuration and 
an excitation operator, respectively. In an exact case, the wave function is written 
as 

~e  = [0)+ C,S~IO)+ DrS~210). (5) 

The solution is straightforward and is given by 

I(~176 (6) 
E = E o -  I<01S~,HS*,IO>I 2 

<OIS, HS*,LO>- E {OIS~HS,=IO >_ E 

where Eo is the HF energy. In the cluster expansion theory, on the other hand, 
the coefficient of the product operator is a product of the coefficient of the 
lower-order term 

~c = exp (CtS~)I0) = IO) + CxS*~lO) + 1 C~S~210). (7) 

The solution is obtained as 

E = E o -  

(OI&HSIIO) - E 

[(01&HI0>I2 (8) 
( O[ Sr H]O)( O[ & HS*~z[O) 

2{(01 s,  ns*,lo) + �89 C~ (0] S, HS*~2I o) - E } 

From Eqs. (6) and (8), we see that the cluster expansion theory simulates well 
the exact case when 

1. the excitation energy to S~2[0) is twice of that to S~[0), and 
2. the matrix element satisfies the relation, (OlSznS*x2[O) = (0lnS*x[0). 
3. When S~2[0) vanishes identically, two cases are trivially equal. 

These relations would be satisfied if the electron correlations are separable, 
namely if only the dynamic correlations are important. However, when the 
operator S~ represents the internal correlation, the excitations among quasi- 
degenerate configurations, etc., these conditions will easily break down. When 
the product (coupling) of the two operators does not satisfy the above conditions 
1-3, we call such coupling as "strong and synthetic coupling". 

For example, let us consider a CO molecule at a large separation. In Fig. 4, we 
show a sketch of the electronic structure to help understanding. As an important 



Exponentially generated wave functions 

Io> s/Io> 
- -  d - -  

- -  - 4 -  
0% 

4+ -4- 

0 

C(1D) 

~C~ Go 

+ O(1D) C(3p) + O(3p) 

SI*210 > 

-Pr 

(TC--~ G 0 (7C--PG o 

~o--..~c ) rco__~c I0 > 

C(ID) + O(ID) 

211 

E(IO>) E(S# 210>) 

3,2 eV 

E(Stl 0 >) 

BREAKDOWN 

OF 

SINGLE REFERENCE THEORY 

Fig. 4. Sketch of the electronic structure of the CO molecule at a large separation which shows the 
origin of the breakdown of the single reference theory 

s t  operator we take a double excitation shown in Fig. 4, and therefore the 
operator s t  2 is the quadruple excitation. At a large separation, the configurations 
10>, S'H0), and S~210> correspond respectively to the 1D, 3p and 1D states of carbon 
and oxygen. Therefore, the excitation energy from ]0> to S*/]0) is negative and 
that from ]0) to S't2!0) is almost zero. Thus, the condition 1 above completely 
breaks down and this leads to a breakdown of the single reference theory. Namely, 
the coupling of the two S~ operators here is not a "separable" coupling but a 
"strong and synthetic" coupling in the sense that it synthesizes an entirely new 
first-order state. Thus, the single reference cluster expansion theory breaks down 
for the CO molecule at a large separation. 

Previously, we have shown the main configurations of the four ly  states of the 
CO molecule with variations of the CO distance [4]. They were obtained by a 
full CI based on the HF orbitals. The HF configuration is dominant only near 
the equilibrium distance of the ground state. Single to quadruple excitations are 
also the main configurations of these four states, showing an interesting com- 
plexity which should be reproduced well by the advanced theory. A preliminary 
MR-SAC calculation has reproduced well these potential curves [4]. 
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4.2. Exponentially generated wave functions 

Now, I explain exponentially generated wave function (EGWF) theory [5]. We 
first define four exponential-type operators, three of which are new. They have 
been introduced to improve some restrictive features of an ordinary exponential 
operator. 

) , 1 
(I) exp aKA*K =- - I+~aKAK+--  ~ aKaLA~A~ 

K 2! mE 

1 +_ ~ t t t aKaLaMAK ALAM +" �9 �9 
3! K,L,M 

(II) E X P ( ~ a K A ~ ) = a o + ~ a K A ~ +  1 K 2! ~ aKaLA~A~ 
mL 

1 
+--  Y, a K a L a ~ a ~ a ~ a ~ + . . . ,  

3 ! r..L,M 

aKL A K AL 
K �9 K,L 

1 
+--  ~ aKLMAK* ALAMt * + . . .  

3! K,L,M 

(9) 

(10) 

(11) 

(IV) % ~  akA~ =-- ao+~ aKAK+~.. ~ aKLAtnAL 
K �9 K,L 

1 
.q___ ~ a K L M A t K  * t ALAM+" �9 �9 �9 (12) 

3 ! K,L;M 

The first one is an ordinary exponential operator. In the capital EXP expansion, 
given by Eq. (10), the coefficient of the identity operator is a variable ao so that 
it can be small relative to the other terms. The variables are normalized within 
the linked terms. In the small script e ~  operator given by Eq. (11) and in the 
capital script %~g~ operator given by Eq. (12), the expansion is the same as those 
of the exp and EXP operators up to the linear terms. However, the coefficients 
of the product operators are not the products of the lower-order terms, but are 
the independent variables. Therefore, these operators can describe strong and 
synthetic coupling effect which is important in the region of quasi-degeneracy as 
explained above for the CO molecule. 

The capital EXP operator is different from the ordinary exp operator. For a direct 
comparison, we renormalize the exp operator as 

(~  ) 1 1 ~ a ~ : '  * - -  aLAK AtL+' ' "  (13) ao exp aKAtK = aO+~K a~ A~  +-~t.. ao ~L 

where a~ = aoaK. When ao is small, the unlinked terms of Eq. (13) tend to 
diverge. However, in the capital EXP operator given by Eq. (10), such divergence 
does not occur. Thus, 

1. the EXP expansion behaves better when ao is small. 
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2. When ao is large, the difference of these two operators is small. 
3. However, we note that the capital EXP operator is not multiplicative in the 
sense 

EXP ( ~  a K A ~ ) E X P ( ~ b L B ~ ) # E X P ( ~ a K A ~ + ~ b L B t r ) .  (14) 

From the ordinary exponential operator, we obtain the SAC expansion. 

�9 exp( o A ),0  
This expansion is size-consistent because of the multiplicative character of the 
operator. 

exp(~aKA~)exp(~bLB~)=exp(~aKA~+~bLB~). (16) 

Further, because of this separability property, this expansion is suitable for a 
description of the dynamic correlation. 

From the capital EXP operator, we obtain a new wave function, extended SAC 
(ESAC) wave function, defined by 

~ZSAC ~ EXP ( ~  aKA~) 10). (17) 

This expansion is expected to behave better than the ordinary expansion in the 
region where 10) is less important. However, this expansion is not size-consistent, 
since the operator is not multiplicative. 

From the script ex~ and %a~ operators, we obtain a new wave function called 
exponentially generated CI (EGCI) wave function. 

Though the ea~# and % ~  operators are different in the coefficient of the identity 
operator, the two expansions are essentially the same, because all the coefficients 
involved are linearly independent. This wave function is a kind of a linear CI 
expansion, and yet is a straightforward generalization of the cluster expansion. 
Therefore, this expansion has the merits of both CI and cluster expansion theory, 
for example, an upper-bond nature and size consistency. This expansion is 
applicable to quasi-degenerate states and to both ground and excited states in 
all ranges of internuclear distance. However, a large defect of this expansion is 
that the dimension of the calculation becomes large. We have to borrow some 
advanced algorithms developed in the field of the CI calculations. Practically 
speaking, a general algorithm for the selection of the A~ operators and the 
truncation of the expansion will become important. 

The methods of solutions of the SAC, ESAC, and EGCI wave functions are 
straightforward. We require Schr6dinger equation ( H -  E)lxI* ) = 0 in the space 
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of the linked configurations, 10) and A~I0) for the SAC and ESAC and 10), A,~I0), 
A~A~IO), etc., for the EGCI. For the SAC and ESAC, this method gives a 
non-variational solution. For the EGCI, this method is also variational. 

4.3. Multi-exponentially generated wave functions 
Here, we explain an idea of mixed- or multi-exponentially generated (MEG) 
wave functions. As already explained, the script % ~  operator is very general 
and is suitable for quasi-degenerate correlation, for instance, but requires rela- 
tively large number of variables. The exp operator has some deficiency as already 
clarified but is suitable for a compact description of the dynamic correlation. 
Therefore, when a system involves two kinds of  correlations, namely, quasi- 
degenerate correlation and dynamic correlation, we use the script %~@ operator 
for the former and the ordinary exp operator for the latter. This mixed or multi 
use of different operators will permit an optimal use of the present idea both 
physically and practically. We call such wave functions as multi-exponentially 
generated (MEG) wave functions. 

From two exponential-type operators, we obtain five MEG wave functions. 

*MEa'=--EXP(~aKA~)%~e~(~bLB*L)IO}. (23) 

MEG1 and MEG2 include two same operators. We note that the two exp operators 
reduce to one because of the multiplicative property (Eq. (16)). However, the 
MEG2 wave function is not equal to the wave function, 

In the former, two parts are assumed to be separable, but in the latter, the 
separability is not presumed. The wave functions MEG3 to MEG5 include 
different kinds of operators. Especially, the MEG4 wave function is equivalent 
to the MR-SAC wave function proposed previously [4]. In all of  these wave 
functions, the operators involved are commutative. This is true for the MR-SAC 
(MEG4) theory even if the multireference part (%~g~ part) is not complete. This 
is in contrast to the previous multireference theories of Mukherjee et al. [11] and 
Jeziorski et al. [65]. 
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Let us consider the MEG2 wave function. This wave function would be suitable 
for a description of two "separably" interacting quasidegenerate systems. 
However, when the two  subsystems are large, part of the correlations would be 
classified into dynamic correlation, so that by introducing the wave function 

g2"MEG6=--exp(~KdaKdatK)~(~KqaKqatK) 

= e x p  ( ~  dagdA~K'q-~LClbLClB~)%~e~ (~K qagqAtK)~ (~L qbLqB~L) 10)' 
(24) 

we would be able to save the number of the variables without much affecting the 
accuracy. The superscripts q and d represent quasidegenerate and dynamic, 
respectively. 

Now we consider the size consistency property. The capital EXP operator is not 
size consistent so that the MEG1, MEG3, and MEG5 wave functions are not 
size consistent, but the MEG2, MEG4, and MEG6 wave functions are size 
consistent. 

5. Algorithm of calculation of the MEG4 wave function 

Now, we consider the applications of the MEG4 theory [66]. We first explain 
the algorithm of the calculation of the MEG4 wave function 

where we adopt the symbols of the MR-SAC theory [4]. In the MEG4 wave 
function, the MR part % ~  (~ :  bKM~)I0 ) represents the zeroth-order description 
of the system, and the exp part represents the cluster expansion around the MR 
part. At a starting point, two different choices of the algorithm are possible. One 
is to consider the two sets of the operators S~ and M~ to be exclusive. We 
calculate the coefficients CI and b~, iteratively. The other choice is to calculate 
the MR-part beforehand by a small EGCI calculation, and to consider the cluster 
expansion around this given function. The operators S*r and M~ need not be 
exclusive. In the present calculations, we adopt the first choice. Namely, the 
operators M~ and S~ are chosen exclusively. 

The method of solution of the MEG4 wave function is straightforward. We require 
the SchriSdinger equation within the main space under consideration, namely, 

(0IH - E[au MEG4) = 0, 

(0IMp (H - E)I~ M~~ = 0, 

(O[MpMQ (H - E)lal tMEG4) = 0, 

(dPoISN (H - E)lat cME~4) = 0, 

(26a) 

(26b) 

(26c) 

(26d) 
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where ~o is the main space of the MR part of Eq. (25). From the M-part equations, 
we obtain an eigenvalue equation 

( A  - E S ) b  = 0 (27 )  

where the matrix A is non-symmetric and S is an overlap matrix. From Eq. (26d), 
we obtain a simultaneous linear equation 

QC = qo (28) 

We solve these two equations iteratively and obtain the coefficients {b}, {C} and 
the energy E. 

We expand the M and S parts of the MEG4 wave function given by Eq. (25) up 
to the single product terms and obtain 

~I I M E G 4  = b010) + Y~ bKM*K]0) + �89 2 bKLM~ M~]0) (29a) 
K K L  

+Y, bz(~bKL)M,MK~ , , M yLIO)+I~E E (~bzj)(~bKL)M,MjMKMLIO)~ 1 * ~" "t t 

I 13 K L  

(29b) 

+boZGS~IO)+YZ t t 1 t t bKL CISI Mr  bKC~S,MKIO)+~ ~ ~ M*L]O) (29c) 
I K I K L  I 

+�89 2 , * a * * * CICIStSj[O)+~ ~ ~ ~ bKCrCjSxSjMKIO) 
I Y  K I J  

bKLCzCjS,SjMK M'riO). (29d) 
K L  I J 

Here the term (29a) is the zeroth order MR part. It gives a gross description of 
the system, say, more than 90% of the system. M*K are the operators necessary 

M r  ML describe for the first description of the system. The product operators * * 
the strong and synthetic coupling of the two operators. The term (29b) represents 
an unlinked approximation of the higher-order MR-part. The term (29c) is first 
order to the S-operators and the term (29d) is second order to the S-operators. 

In the present calculations, the M*K operators are selected as those which are 
important in the preliminary singles and doubles (SD) CI. We form the product 
operators which are double, triple and quadruple excitations. The remaining 
single and double excitation operators are included in the S*/ operators. We then 
generate the unlinked terms which are not redundant with the linkedterms. When 
some M~e{O) configuration is dominant (bK ~-- 1), as in an ordinary excited state, 

t t the S*~ operator acts actually as SxMv as seen from Eq. (29). Therefore, in order 
to eliminate redundancy, we have to delete such S*~ operator for which this 
product operator vanishes identically or is redundant with the other linked 
operators. 

Figure 5 shows a flow chart of the program for the MEG4 calculations. We first 
do preliminary SD CI calculation and choose M ~  and S*~ operators and construct 

�9 t MK ML operators. We include only linearly independent terms. Then, we carry 
out the EGCI calculation with these operators to obtain initial guess used below. 
We then calculate the integrals involving unlinked terms. We construct the 
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Fig. 5. Flow chart of the program for the 
MEG4 calculations 

and 

preliminary CI 

Determine (M;}, {M kt MLT} and {S Z} 

el iminate redundancy from the l inked terms 

1 
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1 
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,[ 
n~ t  on er e I 

I 
yes 

matrices Q, qo, and A and solve Eqs. (28) and (27), iteratively until the conver- 
gence is obtained. In the present stage of the programming,  I do not yet intend 
to introduce any special algorithms for rapid calculations. However, for the steps 
involving linear equation and diagonalization we found that FACOM VP 200, a 
Fujitsu super-computer,  was very efficient. The calculation of the integrals involv- 
ing unlinked terms is rather time-consuming. Probably, parallel processor would 
be very helpful for this step. 

6. Applications of  the M E G 4  theory - calculation of  potential energy curves 

We test the present MEG4 theory and its algorithm by calculating the potential 
energy curves of  some small molecules. First, we apply to the ground state of  
1=2. The basis set is the [4s2p] set of  Huzinaga and Dunning [48]. The orbitals 
are calculated by the CAS-MC-SCF method [67] with 3 x 1 active orbitals. We 
use the program GAMESS [68] for the CAS-SCF and comparative CI  calculations. 
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The active space for the MEG4 calculation consists of 9 orbitals occupied with 
10 electrons. 

Figure 6 shows the main configurations of the F2 ground state in the full CI wave 
function. The lower figure along the potential curve shows the coefficient of the 
Hartree-Fock configuration and the upper one is the minus of  that of  the or-~ o-* 
doubly excited configuration. Near the equilibrium distance, the HF configuration 
is dominant but when the bond distance increases, the coefficient of the doubly 
excited configuration increases, and near 5 a.u., a quasidegenerate situation is 
realized. 

Table 4 shows the ground state energy of F2 at equilibrium [69] and elongated 
distances calculated by various levels of the CI and MEG4 methods. Values in 
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Table 4. Ground state energy of F 2 calculated by various methods 

219 

R = 2.66816 a.u. a R = 4.0 a.u. b 

Method Dimension Energy (a.u.) c Dimension Energy (a.u.) c 

Hartree-Fock 
3 • 1 CAS-SCF 
SD-CI 
SDT-CI 
SDTQ-CI 
full-CI 
MEG4 

1 -198.70769 (81.30) 1 - -  
5 -198.79072 (29.20) 5 -198.79216 (15.61) 

40 -198.83258 (2.93) 40 -198.80827 (5.50) 
146 -198.83419 (1.92) 146 -198.81047 (4.12) 
390 -198.83714 (0.07) 390 -198.81689 (0.09) 
726 -198.83725 (0.00) 726 -198.81704 (0.00) 
dim. (M, MM, S) d dim. (M, MM, S) d 
40 (2, 0, 38) -198.83521 (1.28) 40 (2, 0, 38) -198.81446 (1.62) 
44 (6, 4, 34) -198.83628 (0.61) 44 (8, 4, 32) -198.81574 (0.82) 
73 (12,33,28) -198.83718 (0.04) . 85 (14,45,26) -198.81596 (0.68) 

102(18, 62,22) -198.83684 (0.26) 127 (22, 87, 18) -198.81528 (1.10) 
141 (22,101,18) -198.83687 (0.24) 159 (24,119,16) -198.81561 (0.90) 

a At R = 2.66816 a.u., main configurations are 0.9610)-0.2312) 
bAt R =4.0 a.u., main configurations are 0.8210)-0.5612) 
c Figures in parentheses indicate energy difference in kcal mo1-1 
a Dimensions of the M, MM, and S operators. The Hartree-Fock configuration is included in the M 

operator 

pa ren theses  are the  energy differences in kcal  mol  -~ f rom the full  CI  result .  In  
the  M E G 4  ca lcu la t ion  with the  d imens ion  40, the  reference  is jus t  two,  name ly  
the  H F  conf igura t ion  and  the doub ly  exci ted  o'er* conf igurat ion.  Therefore ,  this 
is the  two conf igura t ion  reference  SAC. The resul t  is be t te r  than  that  o f  the  SDT 

CI  ca lcu la t ion  o f  the  d imens ion  146. W h e n  the p r o d u c t  M M  opera to r s  are 
inc luded ,  the  error  reduces  to one ha l f  with on ly  an increase  o f  4 conf igurat ions .  
The  best  results  are o b t a i n e d  at the  d imens ion  a r o u n d  70-80,  abou t  one tenth  o f  
the d imens ion  o f  the  full  CI.  Fu r the r  increase  in d imens ion  does  not  necessar i ly  
resul t  in an  improvement .  This is because  the h ighe r -o rde r  con t r ibu t ions  o f  the  
M - o p e r a t o r s  are not  i nc luded  by  a t runca t ion  o f  the  expans ion .  Fur ther ,  an  

i m p o r t a n t  obse rva t ion  here  is that  the d e p e n d e n c e  o f  the M E G 4  resul t  on the  
d imens ion  o f  the  ca lcu la t ion  is quite smal l  in c ompa r i son  with tha t  o f  the CI  
theory.  

F igure  7 shows the po ten t i a l  energy curves o f  the  F2 molecu le  ca lcu la ted  by  the 
C A S - M C - S C F ,  SD CI ,  S D T  CI,  M E G 4 ,  and  full  CI  methods .  The SDTQ CI  
results  are  close to the  full  CI  one. The M E G 4  curve is re la t ive ly  close to the  
full  CI  curve. The difference is at mos t  abou t  1 kcal  mol  -a nea r  5 a.u. Table  5 
shows the b o n d  length  and  d i s soc ia t ion  energy o f  F2 ca lcu la ted  by  var ious  
methods .  The  resul t  o f  M E G 4  is c lose to the  full  CI  one. The er ror  in the 
d i s soc ia t ion  energy is 0.6 kca l  tool  -1. 

We next  a p p l y  the M E G 4  m e t h o d  to the g round  and  exci ted  states o f  LiF.  The 
basis  set is aga in  due  to Huz inaga  and  D u n n i n g  [48]. The orbi ta ls  are H a r t r e e -  
Fock.  The  active space  o f  the  M E G 4  ca lcu la t ion  consists  o f  9 orbi ta ls  inc lud ing  
10 electrons.  
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Table 5. Bond length and dissociation energy of F 2 

calculated by various methods 

Method R (a.u.) Do(kal mo1-1) 

Exptl. a 2.6682 36.945 
3 x 1 CAS-SCF 3.03 8.8 
SD-CI 2.88 24.2 
SDT-CI 2.89 23.5 
SDTQ-CI 2.91 21.0 
full CI 2.91 21.0 
MEG4 2.90 21.6 

a [ 6 9 ]  
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For this system, the HF model is a very good approximation. For the ground 
state, the HF configuration is dominant. The lower three excited ~E states are 
typically singly excited states. They correspond to one-electron transfers from 
the p~ orbital of fluorine to the 2s orbital of Li, from the p~ orbital of  fluorine 
to the p~ orbital of Li, and from the p~ orbital of fluorine to the p~ orbital of Li. 
In all of  these excited states, the weight of the HF configuration is very small, 
so that the ordinary cluster expansion theory cannot be applicable to these excited 
states. 

Table 6 shows the energies of the ground and excited states of  LiF at R = 4.0 a.u. 
calculated by the CI and MEG4 methods. For the ground state, the SDT CI 
converges to the full CI, and for the excited states, the SDTQ CI converges to 
the full CI. The MEG4 result is the same as the full CI for the ground state. The 
MEG4 results are also excellent for the excited states. The diiterences from the 
full CI are only few per cents of a millihartree. In contrast to this, the single 
reference SAC theory do not give a convergence for these excited states, though 
it gives a reasonable value for the ground state. Fig. 8 shows the potential energy 
curves of the ground and excited states of  LiF. The MEG4 curves overlap almost 
completely the full CI curves for both the ground and excited states. Thus, we 
conclude that the MEG4 theory is applicable not only to the ground state but 
also to the excited states. 

We next apply the MEG4 theory to the ground and excited states of the CO 
molecule. This system gives a good test for the multireference type theory, because 
the main configurations of  the ground and excited states change drastically as 
the CO distance increases [4]. The basis set is again the [4s2p] set of Huzinaga 
and Dunning [48]. The orbitals are Hartree-Fock. The active space consists of 
ten orbitals occupied by six electrons. In the present MEG4 calculation, we don't  
include the term b of Eq. (29) since in the M and MM operators we include the 
terms only up to quadruple excitations. This is insufficient for the CO molecule 
at larger separations. In this sense, the present result is preliminary in nature. 

Fig. 9 shows the main configurations of the first three 1~ states of the CO molecule 
in the full CI. As shown previously in the minimal STO-6G basis calculation [4], 

Table 6. Ground and excited states of LiF at R = 4.0 a.u. calculated by various methods 

Excited state 
Ground 

Method Dimension X 1~ p~(F)~2s(Li )  p ~ ( F ) ~ p ~ ( L i )  p~(F)-~p~(Li) 

Hartree-Fock 1 -106.921495 - -  - -  - -  

SD-CI 71 -106.921850 -106.698065 -106.624220 -106.588245 
SDT-CI 298 -106.921862 -106.698307 -106.624653 -106.588437 
SDTQ-CI 751 -106.921862 -106.698308 -106.624655 -106.588438 
FulI-CI 1436 -106.921862 -106.698308 -106.624655 -106.588438 
MEG4 80-180 -106.921862 -106.698298 -106.624610 -106.588422 
(Difference from full CI) (0.000000) (0.000010) (0.000045) (0.000016) 

SAC 71 -106.921855 non-converge non-converge non-converge 
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Fig. 8. Potential energy curves of the ground and excited states of LiF calculated by the MEG4 and 
full CI methods 

the main configurations change drastically as the CO distance increases. Though 
the HF configuration is dominant near the equilibrium geometry of the ground 
state, its weight decreases monotonously, the single ~r ~ ~r* excitation mixes in 
the intermediate region, and finally, the double excitation from ~" to ~'* and from 
n to o-* becomes a dominant configuration near the dissociation limit. The second 
state is a n ~ tr* Rydberg type excited state at a short distance, but suffers avoided 
crossing near 2.2 a.u. and becomes then singly excited ~" ~ ~-* state. When the 
CO bond is elongated further the HF configuration mixes. Namely, the avoided 
crossing occurs among the three states. Afterwards, triply and quadruply excited 
configurations increase and the state dissociates into the 3p states of carbon and 
oxygen. The third state is a ~ ~ ~r* excited state at short distance but becomes 
n ~ o-* excited state at a longer distance by an avoided crossing. Then, doubly 
excited ~" ~ ~-* configuration becomes main and finally the HF configuration 
becomes main and the state dissociates into the 1D states of carbon and oxygen. 
Thus, the character of the electronic structure of the CO molecule changes 
drastically as the CO distance increases. 

In Fig. 10 we compare the MEG4 (broken line) and full CI (real line) potential 
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Fig. 9. Main configurations in the full CI of the ground and excited 1E states of the CO molecule 
based on the Hartree-Fock orbitals 

curves for the ground and excited states of the CO molecule. In all of the regions, 
the MEG4 curves reproduce reasonably well the full CI curves. Near the 3-4 a.u. 
region of  the second excited state, the discrepancy is relatively large, because of 
a complex multireference nature of the wave function as shown in Fig. 9. 

The last example of the applications is the ground state of water at equilibrium 
and elongated distances. Some years ago, full CI calculations were reported for 
water at equilibrium and two elongated distances within the full [4s2p] active 
space [70]. Some rela~:ed studies have also been published [17, 71-73]. We carry 
out here the test calculations to see the effectiveness of  the present theory. The 
orbitals we used are the CAS-SCF orbitals within 3 x 3 active space. At R = 1.5 Re, 



224 H. Nakatsuji 

-112.1 

-112.2 

-112,3 

~-112.4 
v 

ta3 

-112.5 

-112.6 

-112,7 

-112,8 

t I I I I I I I 

�9 C O  

full CI 

-- <" / "~ i~i ...... MEG4 _ 

- 

I I I I i I I I 
2,0 2,5 3,0 3.5 4,0 4,5 5.0 5.5 

RC_ 0 (au) 

Fig. 10. MEG4 and full CI potential energy curves of the ground and excited 1X states of the CO 
molecule based on the [4s2p] basis set 

we choose as the M operators 5 single and 26 double excitation operators. From 
these M operators, 56 triple and 113 quadruple excitations are generated. Other 
single and double excitation operators are grouped into the S operators. The 
total dimension is 527. For the other distances, the construction of the M and S 
operators is similar. The total dimension is 736 for R = Re and 1140 for R = 2.0 Re. 

In Table 7, we compare the dimensions and the correlation energies of the 
double-zeta H20 calculated by the various levels of the CI method, the MEG4 
method and the SAC method. The value in parentheses shows the percentage of 
the correlation energy calculated. The CI method is slowly convergent: the 
dimension is 3203 for the SDT CI, 17 678 for the SDTQ CI and 256 473 for the 
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Table 7. Dimensions and correlation energies of the various methods for double-zeta HzO (a.u.) 

R = Re R = 1.5 Re R = 2.0 Re 

Dimen- Dimen- Dimen- 
sion Ecorr (%) sion Eoorr (%) sion Ecor~ (%) 

Hartree-Fock a 1 0.0 1 0.0 1 0.0 
SD-CI b 361 --0.14018 (94.7) 361 -0.18861 (89.4) 361 -0.24964 (80.5) 
SDT-CI b 3 203 --0.14132 (95.5) 3 203 -0.19231 (91.2) 3 203 -0.26035 (84.0) 
SDTQ-CI b 17 678 -0.14776 (99.8) 17 678 -0.20989 (99.5) 17 678 -0.30572 (98.6) 
full-CI b 256473 --0.14803 (100.0) 256473 -0.21099 (100.0) 256473 -0.31007 (100.0) 
MEG4 736 -0.14712 (99.4) 527 -0.20992 (99.5) 1 140 -0.30901 (99.7) 
SAC r 361 --0.14642 (98.9) 361 -0.20511 (97.2) 361 -0.29524 (95.2) 

Hartree-Fock energy is --76.00984 a.u., -75.80353 a.u., and -75.59518 a.u. for R = Re, R = 1.5 Re, 
and R = 2.0 Re, respectively. 
[7o] 

~ [173 

full CI. The M E G 4  method  is more  rapidly convergent:  the d imension is as small 
as 500-1200. The correlat ion energy calculated by the M E G 4  method  is about  
99.5% o f  the full CI  for all the distances. In other  theories, the error increases 
at larger separations. For  the SAC method,  the d imension is 361, the same as 
that o f  the SD CI,  but  the energy error increases with increasing OH distance 
because o f  the decreasing weight o f  the H F  configuration. 

Fig. 11 shows the plots o f  the energy errors relative to the full CI  for  different 
OH distances. The multireference (MR) CI  results are due to Brown et al. [72] 
and the result o f  the mult ireference linearized coupled cluster method  (MR- 
L C C M )  is due to Laidig et al. [73]. The values in parentheses are the dimensions 
o f  the calculations. The energy error increases rapidly in the smaller d imension 
CI  a n d  MR-CI ,  MBFq7 (many  body  per turbat ion theory) [71], C C S D  (coupled 
cluster singles and doubles)  [71 ] and SAC method  [ 17]. The latter two are equivalent  
for  the closed-shell non-var ia t ional  case. In the larger M R - C I  calculations, the 
dependence  becomes flat, but  the dimension is larger than 7906. The result o f  
the present  M E G 4  theory  is given by a bold line. The dependence  is fiat even 
though  the dimension is very small. This is the result o f  the multi use o f  the 
exponent ia l - type operators  in the M E G 4  theory. The energy error is about  1 
millihartree, everywhere. 

F rom the applications o f  the M E G 4  theory shown in this section, we may  conclude 
that  the M E G 4  theory gives reliable results not  only for  g round  states but also 
for  excited states and quasi-degenerate  states. 

7. Summary and conctIusion 

We summarize  the SAC-CI  study o f  benzene as follows. 

1. We per formed ~- + cr SAC and SAC-CI  calculations o f  the g round  and excited 
states o f  benzene using a large active space. Both valence and Rydberg  excitations 
and ionizations were studied. 
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Fig. 11. Energy errors relative to the full CI for the double-zeta H20. (Values in parentheses show 
the dimensions of the variables) 

2. For the valence ~"-> ~* excitations, we observed that the T~, T2, and S~ states 
are understood within only ~r-space. For the T3, $2, and $3 states, the so-called 
V states, the effect of the reorganization of the o- electrons was very large. They 
are 0.63, 0.71, and 0.78 eV, respectively. For the T3 and $2 states, the polarization 
d= functions on carbons werealso  important and improved by 0.35 and 0.33 eV, 
respectively. The average error reduced from 0.78 eV of the ~r CI due to Hay 
and Shavitt [45] to 0.34 eV of the present result. 

3. We first performed a systematic calculation of  the Rydberg excited states 
involving both o- and ~- states. The theory reproduced the experimental value to 

within 0.2 eV. 

4. The SAC-CI ionization potential reproduced the experimental value to within 

0.5 eV. 

We summarize the approach of  the exponentially generated wave function 
(EGWF) theory as follows. 
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1. The idea of the exponent ia l ly  generated wave func t ion  theory was explained 

in [5]. We in t roduced  some strange exponent ia l  operators,  capital EXP, script 

e ~  and  script c a p i t ~ 1 % ~  operators in Eqs. (10)-(12).  With these operators,  
We defined the new wave funct ions ,  the extended SAC (ESAC) wave func t ion  
given by Eq. (17) and  the exponent ia l ly  generated CI (EGCI)  wave func t ion  

given by Eq. (18). Then ,  by  a mixed or mult i  use of  these operators,  We in t roduced  

several M E G  (mul t i -exponent ia l ly  generated)  wave functions.  Such mixed use 

of the operators permits  an  opt imal  theory of electron correlations both  physical ly 
and  practically.  For  example,  the M E G 4  wave func t ion  defined in  this way is 

ident ical  with the MR-SAC wave func t ion  previously in t roduced  [4]. 

2. The present  algori~Lhm for the appl icat ions  of the M E G 4  theory was tested. A 

potent ia l  ut i l i ty of the theory was shown from the appl ica t ions  to the potent ia l  
energy curves of  the g round  states, quasi-degenerate  states, and  excited states of 

some small  diatomics and  triatomics. 
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